Abstract
For a long time, ovarian research has been focused on the follicle, the functional unit of the ovary. However, recent scientific evidence remarks the relevance of the immune response in ovarian function. In this sense, it has been proposed the concept of “Reproductive Immune Microenvironment” that studies the microenvironment associated with reproductive tissues, such as testicular interstitial spaces, ovarian stroma and the endometrium, and its relationship with the resident immune cells. Particularly in the ovary, multiple evidences prove the key role of the immune cells in the ovarian physiology. Among the present cells we can find macrophages, T cells, dendritic cells, NK cells and mastocytes, that contribute to the regulation of the immune response, estrogen synthesis and oogenesis among other processes. Of these populations, macrophages are of special interest since, due to their ability to integrate information from the nervous, immune and endocrine systems together with their functional plasticity and ability to secrete multiple factors, results in them being involved in practically all ovarian physiology. Another concept that has recently been proposed is the Inflammaging, which refers to the inflammation associated to aging. This inflammation is systemic, chronic and low-grade associated with an increase in proinflammatory mediators, different from the local acute inflammation due to lesions and infections. Besides being part of the normal aging process, the inflammaging has been associated with different pathologies. In the ovaries, several reports relate the inflammatory response and fibrosis characteristic of ovarian aging with inflammaging. In this work, we discuss these new concepts of reproductive immune microenvironment and inflammaging, and how they impact on ovarian aging as well as in oocyte quality.
References
Lv H, Zhao G, Jiang P, Wang H, Wang Z, Yao S, et al. Deciphering the endometrial niche of human thin endometrium at single-cell resolution. Proc Natl Acad Sci. 2022 Feb 22;119(8):e2115912119.
Yang X, Gilman-Sachs A, Kwak-Kim J. Ovarian and endometrial immunity during the ovarian cycle. J Reprod Immunol. 2019 Jun;133:7–14.
Kinnear HM, Tomaszewski CE, Chang FL, Moravek MB, Xu M, Padmanabhan V, et al. The ovarian stroma as a new frontier. Reproduction. 2020 Sep;160(3):R25–39.
Finn CA. IMPLANTATION, MENSTRUATION AND INFLAMMATION. Biol Rev. 1986 Nov;61(4):313–28.
Yang F, Zheng Q, Jin L. Dynamic Function and Composition Changes of Immune Cells During Normal and Pathological Pregnancy at the Maternal-Fetal Interface. Vol. 10, Frontiers in Immunology. 2019. p. 1–15.
Machlin JH, Barishansky SJ, Kelsh J, Larmore MJ, Johnson BW, Pritchard MT, et al. Fibroinflammatory Signatures Increase with Age in the Human Ovary and Follicular Fluid. Int J Mol Sci. 2021 May 5;22(9):4902.
Morikawa H, Okamura H, Takenaka A, Morimoto K, Nishimura T. Histamine concentration and its effect on ovarian contractility in humans. Int J Fertil. 1981;26(4):283–6.
Nagamatsu T, Schust DJ. The immunomodulatory roles of macrophages at the maternal-fetal interface. Reprod Sci Thousand Oaks Calif. 2010 Mar;17(3):209–18.
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008 Dec;8(12):958–69.
Fainaru O, Amsalem H, Bentov Y, Esfandiari N, Casper RF. CD56brightCD16− natural killer cells accumulate in the ovarian follicular fluid of patients undergoing in vitro fertilization. Fertil Steril. 2010 Oct;94(5):1918–21.
Fainaru O, Hantisteanu S, Rotfarb N, Michaeli M, Hallak M, Ellenbogen A. CD11c+HLADR+ dendritic cells are present in human ovarian follicular fluid, and their maturity correlates with serum estradiol levels in response to gonadotropins. Fertil Steril. 2012 Mar;97(3):702–6.
Shi SL, Peng ZF, Yao GD, Jin HX, Song WY, Yang HY, et al. Expression of CD11c+HLA-DR+dendritic cells and related cytokines in the follicular fluid might be related to pathogenesis of ovarian hyperstimulation syndrome. Int J Clin Exp Pathol. 2015;8(11):15133–7.
Zhang T, Tian F, Huo R, Tang A, Zeng Y, Duan Y. Detection of dendritic cells and related cytokines in follicular fluid of patients with polycystic ovary syndrome. Am J Reprod Immunol. 2017 Sep;78(3):e12717.
Liu D, Tu X, Huang C, Yuan Y, Wang Y, Liu X, et al. Adoptive transfers of CD4 + CD25 + Tregs partially alleviate mouse premature ovarian insufficiency. Mol Reprod Dev. 2020 Aug;87(8):887–98.
Gao H, Gao L, Wang W. Advances in the cellular immunological pathogenesis and related treatment of primary ovarian insufficiency. Am J Reprod Immunol. 2022 Nov;88(5):e13622.
Tingen CM, Kiesewetter SE, Jozefik J, Thomas C, Tagler D, Shea L, et al. A macrophage and theca cell-enriched stromal cell population influences growth and survival of immature murine follicles in vitro. REPRODUCTION. 2011 Jun;141(6):809–20.
Turner EC, Hughes J, Wilson H, Clay M, Mylonas KJ, Kipari T, et al. Conditional ablation of macrophages disrupts ovarian vasculature. REPRODUCTION. 2011 Jun;141(6):821–31.
Rodgers RJ, Lavranos TC, Van Wezel IL, Irving-Rodgers HF. Development of the ovarian follicular epithelium. Mol Cell Endocrinol. 1999 May;151(1–2):171–9.
Rodgers RJ, Irving-Rodgers HF. Formation of the Ovarian Follicular Antrum and Follicular Fluid1. Biol Reprod. 2010 Jun 1;82(6):1021–9.
Foley KG, Pritchard MT, Duncan FE. Macrophage-derived multinucleated giant cells: hallmarks of the aging ovary. Reproduction. 2021 Feb;161(2):V5–9.
Machtinger R, Laurent LC, Baccarelli AA. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum Reprod Update. 2015 Dec 9;dmv055.
Paul N, Sultana Z, Fisher JJ, Maiti K, Smith R. Extracellular vesicles- crucial players in human pregnancy. Placenta. 2023 Sep;140:30–8.
Erlebacher A. Immunology of the maternal-fetal interface. Annu Rev Immunol. 2013 Jan;31:387–411.
Hesketh M, Sahin KB, West ZE, Murray RZ. Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing. Int J Mol Sci. 2017 Jul 17;18(7):1545.
Pepe G, Locati M, Della Torre S, Mornata F, Cignarella A, Maggi A, et al. The estrogen–macrophage interplay in the homeostasis of the female reproductive tract. Hum Reprod Update. 2018 Nov 1;24(6):652–72.
McGee EA, Hsueh AJW. Initial and Cyclic Recruitment of Ovarian Follicles*. Endocr Rev. 2000 Apr 1;21(2):200–14.
Broekmans FJ, Soules MR, Fauser BC. Ovarian Aging: Mechanisms and Clinical Consequences. Endocr Rev. 2009 Aug 1;30(5):465–93.
Ebrahimi M, Akbari Asbagh F. The role of autoimmunity in premature ovarian failure. Iran J Reprod Med. 2015 Aug;13(8):461–72.
Xiao Y, Peng X, Peng Y, Zhang C, Liu W, Yang W, et al. Macrophage‐derived extracellular vesicles regulate follicular activation and improve ovarian function in old mice by modulating local environment. Clin Transl Med. 2022 Oct;12(10):e1071.
Rehman A, Pacher P, Haskó G. Role of Macrophages in the Endocrine System. Trends Endocrinol Metab. 2021 Apr;32(4):238–56.
Zhang Z, Huang L, Brayboy L. Macrophages: an indispensable piece of ovarian health. Biol Reprod. 2021 Mar 11;104(3):527–38.
Selvaraj SK, Giri RK, Perelman N, Johnson C, Malik P, Kalra VK. Mechanism of monocyte activation and expression of proinflammatory cytochemokines by placenta growth factor. Blood. 2003 Aug 15;102(4):1515–24.
Marcinkiewicz JL. The involvement of tumor necrosis factor- alpha TNF as an intraovarian regulator of oocyte apoptosis in the neonatal rat. Front Biosci. 2002;7(4):d1997-2005.
Wang J, Yin T, Liu S. Dysregulation of immune response in PCOS organ system. Front Immunol. 2023 May 5;14:1169232.
Wu R, Fujii S, Ryan NK, Van Der Hoek KH, Jasper MJ, Sini I, et al. Ovarian leukocyte distribution and cytokine/chemokine mRNA expression in follicular fluid cells in women with polycystic ovary syndrome. Hum Reprod. 2007 Feb;22(2):527–35.
Ono Y, Nagai M, Yoshino O, Koga K, Nawaz A, Hatta H, et al. CD11c+ M1-like macrophages (MΦs) but not CD206+ M2-like MΦ are involved in folliculogenesis in mice ovary. Sci Rep. 2018 May 25;8(1):8171.
Lim MA, Lee J, Park JS, Jhun JY, Moon YM, Cho ML, et al. Increased Th17 differentiation in aged mice is significantly associated with high IL-1β level and low IL-2 expression. Exp Gerontol. 2014 Jan;49:55–62.
Schmitt V, Rink L, Uciechowski P. The Th17/Treg balance is disturbed during aging. Exp Gerontol. 2013 Dec;48(12):1379–86.
Jagger A, Shimojima Y, Goronzy JJ, Weyand CM. Regulatory T Cells and the Immune Aging Process: A Mini-Review. Gerontology. 2014;60(2):130–7.
Huang Y, Hu C, Ye H, Luo R, Fu X, Li X, et al. Inflamm-Aging: A New Mechanism Affecting Premature Ovarian Insufficiency. J Immunol Res. 2019 Jan 2;2019:1–7.
Chung HY, Kim DH, Lee EK, Chung KW, Chung S, Lee B, et al. Redefining Chronic Inflammation in Aging and Age-Related Diseases: Proposal of the Senoinflammation Concept. Aging Dis. 2019;10(2):367.
Zhou Y, Ding X, Wei H. Reproductive immune microenvironment. J Reprod Immunol. 2022 Aug;152:103654.
Briley SM, Jasti S, McCracken JM, Hornick JE, Fegley B, Pritchard MT, et al. Reproductive age-associated fibrosis in the stroma of the mammalian ovary. Reproduction. 2016 Sep;245–60.
Ford HZ, Byrne HM, Myerscough MR. A lipid-structured model for macrophage populations in atherosclerotic plaques. J Theor Biol. 2019 Oct;479:48–63.
Ford HZ, Zeboudj L, Purvis GSD, Ten Bokum A, Zarebski AE, Bull JA, et al. Efferocytosis perpetuates substance accumulation inside macrophage populations. Proc R Soc B Biol Sci. 2019 Jun 12;286(1904):20190730.
Ginhoux F, Guilliams M. Tissue-Resident Macrophage Ontogeny and Homeostasis. Immunity. 2016 Mar;44(3):439–49.
Zhang Z, Schlamp F, Huang L, Clark H, Brayboy L. Inflammaging is associated with shifted macrophage ontogeny and polarization in the aging mouse ovary. Reproduction. 2020 Mar;159(3):325–37.
Indicadores Básicos Argentina 2022 [Internet]. Ministerio de Salud, Organización Panamericana de la Salud; Available from: https://www.argentina.gob.ar/sites/default/files/indicadores_basicos_2022_final.pdf
Organización Panamericana de la Salud. Core-Indicators Portal, Region of the Americas [Internet]. Available from: https://opendata.paho.org/en/core-indicators
Tasa de fecundidad según grupo de edad (por mil mujeres), tasa global de fecundidad, tasa bruta de reproducción y edad promedio de las madres según año de inscripción. Ciudad de Buenos Aires. Años 1990/2022 [Internet]. Dirección general de estadísitcas y censos GCBA; Available from: https://www.estadisticaciudad.gob.ar/eyc/wp-content/uploads/2021/05/PB3_14.xlsx
Glujovsky D, Pesce R, Miguens M, Sueldo CE, Lattes K, Ciapponi A. How effective are the non-conventional ovarian stimulation protocols in ART? A systematic review and meta-analysis. J Assist Reprod Genet. 2020 Dec;37(12):2913–28.
Zegers-Hochschild F, Crosby JA, Musri C, Souza MDCBD, Martínez AG, Silva AA, et al. Celebrating 30 years of ART in Latin America; and the 2018 report. JBRA Assist Reprod [Internet]. 2021 [cited 2023 Nov 30]; Available from: https://www.jbra.com.br/trab/pub/download_trabalho.php?fileSource=/var/www/vhosts/jbra.com.br/media/trab/arq_2997&fileName=16%20-%201856%20-%20Celebrating.pdf&id_trabalho=1228
Franasiak JM, Forman EJ, Hong KH, Werner MD, Upham KM, Treff NR, et al. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil Steril. 2014 Mar;101(3):656-663.e1.
Van Loendersloot LL, Moolenaar LM, Mol BWJ, Repping S, Van Der Veen F, Goddijn M. Expanding reproductive lifespan: a cost-effectiveness study on oocyte freezing. Hum Reprod. 2011 Nov 1;26(11):3054–60.
Duncan FE, Jasti S, Paulson A, Kelsh JM, Fegley B, Gerton JL. Age‐associated dysregulation of protein metabolism in the mammalian oocyte. Aging Cell. 2017 Dec;16(6):1381–93.
Hernandez‐Pando R, Bornstein QL, Aguilar Leon D, Orozco EH, Madrigal VK, Martinez Cordero E. Inflammatory cytokine production by immunological and foreign body multinucleated giant cells. Immunology. 2000 Jul;100(3):352–8.